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Abstract Convective self-aggregation, the spontaneous organization of initially scattered

convection into isolated convective clusters despite spatially homogeneous boundary

conditions and forcing, was first recognized and studied in idealized numerical simulations.

While there is a rich history of observational work on convective clustering and organi-

zation, there have been only a few studies that have analyzed observations to look

specifically for processes related to self-aggregation in models. Here we review observa-

tional work in both of these categories and motivate the need for more of this work. We

acknowledge that self-aggregation may appear to be far-removed from observed convec-

tive organization in terms of time scales, initial conditions, initiation processes, and mean

state extremes, but we argue that these differences vary greatly across the diverse range of
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model simulations in the literature and that these comparisons are already offering

important insights into real tropical phenomena. Some preliminary new findings are pre-

sented, including results showing that a self-aggregation simulation with square geometry

has too broad distribution of humidity and is too dry in the driest regions when compared

with radiosonde records from Nauru, while an elongated channel simulation has realistic

representations of atmospheric humidity and its variability. We discuss recent work

increasing our understanding of how organized convection and climate change may

interact, and how model discrepancies related to this question are prompting interest in

observational comparisons. We also propose possible future directions for observational

work related to convective aggregation, including novel satellite approaches and a ground-

based observational network.

Keywords Self-aggregation � Tropical convection � Convective organization � Climate

sensitivity � Cloud feedback

1 Introduction

From the very first studies describing convective self-aggregation (e.g., Held et al. 1993;

Tompkins 2001; Bretherton et al. 2005), the spontaneous clustering of convection, cloud,

and moisture in idealized numerical simulations of radiative–convective equilibrium

(RCE) despite homogeneous initial conditions, boundary conditions, and forcing (cf. Wing

et al. 2017), there has been a recurring question: Is this ‘‘real’’? In other words, is the

intriguing clumping behavior representative of actual convective organization in nature, or

is it just a model artifact? And, to the extent that the behavior is relevant for understanding

real atmospheric convection, what does it tell us about the role of convective organization

in weather and climate?

Here we argue that this behavior in models does appear to be relevant to real-world

convection and climate. Certainly, the study of convective self-aggregation is leading to

exciting new insights into processes that allow convection to interact with its environment

in models. There are encouraging signs that these processes may operate in nature too, as

we discuss below. There are also some aspects of self-aggregation in models that conflict

with observations, and many aspects that need more observational study.

This paper is organized as follows. In the remainder of this section, we motivate the

study of aggregation as a means of understanding real-world climate and review the

literature on observations of organized convection and convective aggregation. Section 2

presents a fairly brief review of processes important for self-aggregation and the mainte-

nance of aggregated convection in idealized simulations, with a focus on aspects of these

processes that could be targeted in observational studies. We then discuss observational

pathways toward assessing the relevance of the idealized framework for real-world

applications, including some new results comparing humidity profiles from radiosondes

with humidity profiles from idealized self-aggregation, in Sect. 3. Section 4 provides

observational perspectives on the possible interaction between convective aggregation and

climate change, while Sect. 5 proposes novel approaches to observing convective aggre-

gation, including ideas for new satellite studies and ground-based networks; this is fol-

lowed by our conclusions.
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1.1 Importance of Aggregation

Convective clouds exhibit a very large diversity of spatial organization, ranging from

spatially random distributions to coherent structures such as mesoscale cloud clusters,

cloud streets, and squall lines up to cloud envelopes of planetary scale (Fig. 1). For many

decades, studies of convective organization have been developed by mesoscale meteo-

rologists and weather forecasters, motivated by the wish to understand why convection

would organize in one form rather than another, and by the evidence that the organization

of convection matters for the prediction of severe weather. Over the last decade, however,

the ability to study the organization of convection with models running at increasingly fine

resolution over increasingly large domains has led to new perspectives and to a new line of

questioning: Does it make any difference for climate whether convection organizes in one

form or another?

It has long been recognized that convective organization influences the diabatic heating

profile of the atmosphere and thus affects the mean large-scale atmospheric circulation

(e.g., Hartmann et al. 1984). More recent numerical studies show that the clumping of

convection can occur spontaneously even in the absence of external drivers such as

inhomogeneous surface boundary conditions or equatorial wave dynamics (e.g., Held et al.

1993; Bretherton et al. 2005; Muller and Held 2012; Wing and Emanuel 2014) and that this

behavior, referred to as convective self-aggregation, may be considered as a fundamental

instability of radiative–convective equilibrium (Emanuel et al. 2014). Could tropical

phenomena such as tropical cyclones or Madden–Julian Oscillation (MJO) events represent

manifestations of this self-aggregation behavior at different spatial scales (Khairoutdinov

Fig. 1 A visible satellite image showing an active Madden–Julian Oscillation (MJO) event on 8 April 2009
and convection organized over a wide range of scales. Image taken from the NERC Satellite Receiving
Station, Dundee University, Scotland http://www.sat.dundee.ac.uk/
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and Emanuel 2010, 2013; Arnold and Randall 2015)? Answering this question would

provide new opportunities to understand and to predict these phenomena through com-

pletely novel approaches.

Numerical studies of convective aggregation also show that the clumping of convection

is associated with changes in the large-scale state, including a drying of the atmosphere, a

shrinking of upper-tropospheric clouds, and an enhanced ability of the atmosphere to lose

heat to space (e.g., Wing and Emanuel 2014; Wing and Cronin 2016; Holloway and

Woolnough 2016; Bony et al. 2016). Self-aggregation in numerical models also exhibits

some temperature dependence (Khairoutdinov and Emanuel 2010; Wing and Emanuel

2014; Emanuel et al. 2014; Coppin and Bony 2015; Wing and Cronin 2016). The com-

bination of these different findings implies that changes in convective organization could

occur under climate change, potentially affecting the water vapor and cloud feedbacks.

These numerical results shed new light on the role that convective aggregation might play

in climate (Mapes 2016): Could a sensitivity of convective aggregation to temperature

modulate climate sensitivity and hydrological sensitivity (Khairoutdinov and Emanuel

2010; Mauritsen and Stevens 2015; Bony et al. 2015)? In a warmer climate, could it play a

role in the intensification of the MJO (Arnold and Randall 2015; Arnold et al. 2015) or in

the narrowing of tropical rain belts (Bony et al. 2016)?

Many of these exciting scientific questions primarily stem from numerical investiga-

tions. However, numerous studies (e.g., Stephens et al. 2008; Muller and Bony 2015; Wing

and Cronin 2016; Holloway and Woolnough 2016; Silvers et al. 2016; Tompkins and

Semie 2017) demonstrate that the behavior of convective aggregation in models can be

sensitive to aspects of the experimental setup (such as the size of the domain) and/or to the

models themselves (e.g., horizontal resolution, the representation of diabatic processes or

the parameterization of subgrid-scale mixing).

To move forward, we must therefore expand our study of the aggregation of convection

using observations. We must probe links between processes in idealized self-aggregation

and observed convective organization and also confront differences between idealized

frameworks and the real world. We first present a review of relevant literature below

before addressing these topics in the following sections.

1.2 Literature Review: Observational Studies of Convective Organization

There is a rich history of observational work on convective clustering and organization,

much of which details the climatology and life cycles of these systems. The primary source

of data for this observational work is infrared and visible images from geostationary

satellites, dating back to at least Arkin (1979) and encompassing Velasco and Fritsch

(1987), Miller and Fritsch (1990), Laing and Fritsch (1993a, b), Machado and Rossow

(1993), Mapes and Houze (1993), Laing and Fritsch (1997), Zuidema (2003), and Hennon

et al. (2012), but some more recent studies have also used other types of satellite data such

as precipitation radar (Nesbitt et al. 2000; Schumacher and Houze 2003; Futyan and Genio

2007; Peters et al. 2009), microwave measurements of column water vapor (CWV) (Mapes

et al. 2009), and scatterometer winds (Mapes et al. 2009). While cloud clusters are often

identified by searching for large, contiguous cold cloud shields, more advanced techniques

search for the combined signature of deep convection and extensive stratiform cloud and

precipitation area. For example, higher stratiform rain fractions are associated with

organized convection, which can be diagnosed from satellite precipitation radar data

(Schumacher and Houze 2003), as are large optical thicknesses and low-cloud top
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pressures, which can distinguish a particular cloud regime (Tselioudis et al. 2010; Tan

et al. 2013).

A significant fraction of the observational work on organized convection has focused on

mesoscale convective systems (MCSs), or a subset of them known as mesoscale convective

complexes (MCCs), which occur in both the tropics and mid-latitudes. A global clima-

tology of MCCs, which are identified by a large ([105 km2), long-lasting ([6 h), quasi-

circular cold cloud shield, was compiled by Laing and Fritsch (1997) based on previous

regional studies (Miller and Fritsch 1990; Laing and Fritsch 1993a, b; Velasco and Fritsch

1987).

Other studies have detailed the properties of, more generally, tropical cloud clusters and

deep convective systems. This includes studies on the structural characteristics and

radiative properties of tropical high cloud systems (Machado and Rossow 1993), the life

cycles of deep convective systems (Futyan and Genio 2007; Mapes et al. 2009), the size

distribution of cloud clusters (Mapes and Houze 1993; Roca and Ramanathan 2000;

Zuidema 2003; Peters et al. 2009), and the spatial and temporal variability in cloud clusters

and their efficiency at producing tropical cyclones (Hennon et al. 2012). Studies have also

pointed out significant self-similarity between MCSs and convectively coupled equatorial

waves (Mapes et al. 2006; Kiladis et al. 2009).

Despite the fact that the occurrence of mesoscale organized convection makes up a

small fraction of the total frequency of cloud/precipitation features in the tropics (\6%,

Mapes and Houze 1993; Nesbitt et al. 2000; Tan et al. 2013), it contributes a significant

proportion of total tropical cloudiness1 and about half of total tropical precipitation.2

Tropical cloud clusters therefore may modulate the radiative heating of the surface and

atmosphere (e.g., Machado and Rossow 1993) and strongly influence the large-scale cir-

culation, moisture distribution, and hydrological cycle. There is observational evidence

that the frequency of organized convection has increased across the tropics over the past

� 30 years (Tselioudis et al. 2010) and that most of the regional increases in tropical

precipitation over that period are associated with this increase (Tan et al. 2015). In addition

to their contribution to tropical cloudiness and precipitation, tropical cloud clusters also

play an important role as precursors to tropical cyclones, with globally 6.4% of tropical

cloud clusters developing into tropical cyclones each year (Hennon et al. 2012).

Another observational finding which may be relevant to self-aggregation is the evidence

that tropical precipitation has properties like those of a critical phenomenon. Peters and

Neelin (2006) found that there is a power law increase in precipitation with CWV above a

critical CWV value, and a sharp peak in the variance of precipitation at the critical value.

Holloway and Neelin (2009) further found that free-tropospheric moisture plays a key role

in the transition to deep convection and linked the increase in precipitation with CWV to

an increase in the buoyancy of entraining plumes, which relates to the proposed moisture–

convection feedback in self-aggregation. Neelin et al. (2009) also noted that the atmo-

sphere is near criticality a larger fraction of the time when it is over warm sea surface

temperatures (SSTs). Peters et al. (2009) found that precipitation clusters exhibited scale-

1 Mapes and Houze (1993) found that half of the very cold cloudiness was contributed by cloud clusters

greater than 2� 104 km2 in size and half of the moderately cold cloudiness was contributed by cloud

clusters greater than 105 km2 in size. Mapes (1993) found that 43% of the total cold cloud coverage in the
tropics was associated with large superclusters.
2 Tan et al. (2013) found that the cloud regime associated with organized convection contributes 45% of
total tropical rainfall. Nesbitt et al. (2000) found that precipitation features that include an MCS contribute
38–55% of total rainfall in various regions of the tropics.
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free size distributions including much larger clusters near-critical CWV than below it,

suggesting a possible link between clustering within the moist convective regions in ide-

alized self-aggregation and near-critical CWV values.

While the literature on observations of tropical cloud clusters is extensive (only a small

segment of which was reviewed here), only a few studies have specifically looked for

processes related to modeled self-aggregation using observations. The first such paper,

Tobin et al. (2012), used geostationary satellite infrared brightness temperature in snap-

shots of large tropical latitude-longitude boxes (10� � 10�) to categorize observations by

their degree of convective organization. To do this, they devised the Simple Convective

Aggregation Index (SCAI) as a combined measure of cluster number and inter-cluster

distance, with cluster pixels defined as having brightness temperature below 240 K and

with larger SCAI corresponding to a less aggregated state. They found that cluster number

was statistically sufficient to discriminate between different levels of aggregation, so they

often used the number of clusters as a metric for the degree of aggregation, with fewer

clusters corresponding to a more aggregated state. By controlling for measures of box-

mean convective intensity and large-scale forcing, including rainfall from microwave

satellite data, SST from infrared satellite data, and vertical velocity from reanalyses, they

could compare atmospheric conditions for varying amounts of convective organization in a

way that was analogous to comparing different stages of aggregation in idealized models.

Tobin et al. (2012) found several similarities between their observational analyses and

idealized simulations of self-aggregation. Holding large-scale SST and rainfall constant,

they found that more aggregated states had a drier free troposphere in the non-convective

environment and, consequently, in the domain as a whole. They also found an increase in

outgoing longwave radiation (OLR) at the top of the atmosphere (by as much as 30Wm�2)

with aggregation (Fig. 2a), mainly because of a reduction of mid-level and upper level

cloudiness. These main conclusions, in agreement with all studies of idealized self-ag-

gregation in models, were also supported by a related paper, Tobin et al. (2013), which

looked at smaller (3� � 3�) domains using higher-resolution satellite brightness

Fig. 2 a Composites over many 10� � 10� snapshots of domain-averaged OLR from CERES and NOAA
for two different average rain rates for different satellite-derived cluster numbers, with fewer clusters
representing more aggregated convection. b Similar analysis for 3� � 3� snapshots of domain-averaged free-
tropospheric humidity derived from Meteosat Tb in the WV channel, for three different average rain rates. c
Domain-averaged AIRS relative humidity composited on the same 3� � 3� snapshots as in b for three cluster

number bins for a precipitation rate of 8mmday�1. Figures from Tobin et al. (2012) (panel a) and Tobin
et al. (2013) (panels b, c)
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temperature data (Fig. 2b, c), as well as Stein et al. (2017), which analyzed the vertical

cloud structure for different SCAI values using CloudSat–CALIPSO data.

On the other hand, Tobin et al. (2012, 2013) found some results that were inconclusive,

mixed, or contradictory when compared with modeling studies. For instance, Tobin et al.

(2012) found that surface turbulent heat fluxes increased both inside and outside con-

vective regions when aggregation increased, whereas Tobin et al. (2013) found little

sensitivity of these fluxes to aggregation at the smaller scales they investigated (although

this discrepancy could be due to limitations in satellite retrievals of surface fluxes). In

idealized simulations, surface fluxes generally increase with self-aggregation (e.g.,

Bretherton et al. 2005; Wing 2014; Holloway and Woolnough 2016), with the increase due

to larger wind speeds in general and larger air–sea enthalpy disequilibrium in the dry

environment (Wing and Emanuel 2014). (Note that this modest increase in surface fluxes

for idealized models is also consistent with slightly larger atmospheric radiative cooling

rates and precipitation rates in radiative–convective equilibrium after aggregation has

occurred.) Tobin et al. (2012, 2013) also found that the top-of-atmosphere net radiation

budget was not significantly affected by aggregation because increased OLR was offset by

decreased reflected shortwave radiation. This differs from idealized simulations discussed

by Wing and Cronin (2016), in which an increase in low-cloud fraction with aggregation

left reflected shortwave largely unchanged, leading to a net loss of radiation at the top of

atmosphere for aggregated conditions. Tobin et al. (2013) and Stein et al. (2017) both

found evidence for an increase in low-cloud fraction with aggregation, while Tobin et al.

(2012) found the opposite, so the models are supported by at least some observational

studies regarding low-cloud changes.

In the next section, we briefly review processes found to be important for self-aggre-

gation in models with a focus on links to observed convective organization.

2 Observational Perspectives on Processes Important for Idealized
Convective Aggregation

There are longstanding attempts to reconcile the well-observed clumping of tropical

convection with simple theory (e.g., Mapes 1993). Randall and Huffman (1980) proposed

that clumping occurs when clouds can create an area around themselves that is more

favorable for future convection than areas further away. Numerical studies of self-aggre-

gation have identified multiple processes involving convection–moisture–radiation feed-

backs that are capable of doing exactly that. The diversity of processes that can lead to

convective aggregation may explain why it has been observed by multiple different

modeling groups using very different models, from high-resolution cloud-resolving models

to global climate models (GCMs) with parameterized convection. Additionally, different

feedbacks that lead to aggregation may be excited by different initial conditions.

We will mostly discuss self-aggregation in idealized settings: radiative convective

equilibrium (RCE) over constant uniform SST in non-rotating, three-dimensional, doubly

periodic square domains, though some rectangular and aquaplanet simulations will occa-

sionally be discussed as well. It is worth noting that self-aggregation has been shown to be

robust to the presence of rotation (Bretherton et al. 2005; Khairoutdinov and Emanuel

2013; Bretherton and Khairoutdinov 2015; Davis 2015; Wing et al. 2016), vertical shear

(Bretherton et al. 2005), diurnal cycle (Wing and Cronin 2016), two-dimensional or three-

dimensional settings (Held et al. 1993; Jeevanjee and Romps 2013), and an interactive
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ocean mixed layer (Bretherton et al. 2005; Hohenegger and Stevens 2016), and to occur as

well in global climate simulations with parameterized convection in aquaplanet non-ro-

tating settings (Coppin and Bony 2015; Popke et al. 2013; Reed et al. 2015).

In this section, we briefly review the various processes leading to the self-aggregation of

convection in RCE simulations and the metrics used to quantify them, including the

physical processes that lead to aggregation from homogeneous initial conditions as well as

those which can maintain convective aggregation once it is established. We focus on those

which could be targeted in observations; a more complete review can be found in Wing

et al. (2017).

2.1 Metrics to Quantify Feedbacks

Several methods have been proposed to analyze the leading order feedbacks in simulations

(and also possibly in observations). They all share the methodology of stratifying the data

by vertically integrated moist static energy (MSE). In the tropics, weak temperature gra-

dients imply that horizontal variability of MSE is largely dictated by variability in CWV.

Using this methodology, different variables can be moisture-ranked.

Wing and Emanuel (2014) introduced an analysis framework employing a budget for

the spatial variance of MSE. Self-aggregation is associated with a very strong increase in

MSE variance. The equation for the time evolution of MSE variance allows one to estimate

the various contributions to the enhanced MSE variability. The terms of this budget include

the horizontal convergence or divergence of MSE, as well as the direct diabatic contri-

butions from radiative and surface fluxes, i.e., whether a heating/moistening diabatic

tendency reinforces (positive feedback) or smoothes (negative feedback) MSE gradients.

The potential use of observations to calculate the diabatic terms in the MSE spatial

variance budget is discussed more in Sect. 2.4.

Note that these diabatic terms include the direct diabatic effects of radiative and surface

flux feedbacks, not the circulation that the diabatic terms generate. For instance a positive

shortwave (SW) feedback means anomalous SW heating in the high-MSE region and/or

anomalous SW cooling in the low-MSE region, thereby enhancing the MSE gradient. The

diabatic feedback term does not account for the dynamical response to this SW heating

distribution, which can also transport MSE up- or down-gradient. This transport is a

component of the horizontal convergence term, but is not explicitly diagnosed separately

from the other dynamical contributions in this framework. Another related issue is that

these diagnostics are based on vertical integrals and hence do not explicitly capture the

sensitivity to the vertical distribution of diabatic forcings found in Muller and Bony (2015).

Indeed diabatic tendencies applied at different heights can yield different MSE transports

since MSE varies strongly with height.

An assessment of both the direct diabatic effect and the indirect circulation and MSE

transport corresponding to a heating anomaly is achieved in model simulations with sen-

sitivity runs in which diabatic terms are horizontally homogenized, removing both direct

and indirect effects, as done in Muller and Held (2012). This is obviously not possible with

observations. The remaining option is to analyze the circulation generated by diabatic

forcing and infer the MSE transport as done in Holloway and Woolnough (2016). The

visualization of the MSE transport is usually done with a stream function in moisture and

height space (Bretherton et al. 2005; Muller and Held 2012; Holloway and Woolnough

2016). This quantifies the energy transport between the dry region and the moist region and

hence determines whether it is up-gradient, which is typical of aggregation in idealized

model studies (e.g., Bretherton et al. 2005; Muller and Held 2012) though the total
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vertically integrated transport is not always up-gradient (e.g., Coppin and Bony 2015). This

visualization method is useful in simulations, where vertical profiles of vertical velocity as

a function of MSE are available, but it is not clear whether it is applicable to observations.

Also, quantifying the role played by radiation in the circulation requires vertical profiles of

radiation as a function of MSE (cf. Muller and Bony 2015), which are only beginning to

become available in observations (e.g., Haynes et al. 2013). Section 5.3 explores possible

approaches to observing these profiles using ground-based instruments.

Bretherton et al. (2005) showed that they could capture the aggregation instability in a

semiempirical toy model accounting for the sensitivity of radiative and surface fluxes, as

well as MSE convergence, to humidity. In their theoretical paper of convective aggrega-

tion, Craig and Mack (2013) take a somewhat similar approach, although the physical

processes are modeled differently (in particular the MSE convergence is modeled as a

diffusive process). The end result is an expression of the rate of change of humidity as a

function of humidity itself oI=ot ¼ f ðIÞ ¼ �dV=dI þ T , where I is the order parameter (in

this case column-integrated free-tropospheric water vapor), V(I) is a potential function, and

T is a diffusive transport term. The minima of the functional V(I) are equilibrium values of

humidity. The structure of the functional V(I) therefore highlights the appearance of

multiple equilibria typical of self-aggregation, with the two minima corresponding to the

moist and dry solutions. Although this framework allows for the identification of aggre-

gation, it is unclear if it can be used to identify feedbacks involved in the aggregation

process. Aggregation from different feedbacks may have different signatures in the

functional dependence V(I).

More work using theory, as well as idealized (and perhaps more realistic) simulations, is

desirable to compare conceptual frameworks and metrics of aggregation and determine

how these could be applied to observations.

2.2 Initiation Processes

At SSTs close to our current tropical climate (300 K or so), the leading physical process

behind the spontaneous self-aggregation of convection seems to be a ‘‘radiatively driven

cold pool’’ outside deep convection, as seen in a schematic from Coppin and Bony (2015)

(Fig. 3). One or several dry regions appear and expand, with strong longwave radiative

cooling and subsidence yielding further drying. Moisture and convection are confined to

the rest of the domain, as the dry convection-free region expands. In the following, we

briefly review the various physical processes contributing to the formation of this radia-

tively driven cold pool for temperatures close to current tropical atmospheric temperatures,

Fig. 3 Aggregation processes for: (left) cold SSTs with radiatively driven cold pools, and (right) warm
SSTs with surface flux feedbacks. Figure adapted from Coppin and Bony (2015)
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and then we discuss the sensitivity of these processes to SST. A more complete review can

be found in Wing et al. (2017).

2.2.1 Longwave Radiation

As mentioned above, aggregation generally begins with the formation of a dry region with

strong radiative cooling. The strong longwave cooling in the dry region is largely induced

by low-level clouds (Muller and Held 2012; Muller and Bony 2015; Coppin and Bony

2015; Holloway and Woolnough 2016), although clear-sky cooling also contributes (Wing

and Emanuel 2014; Wing and Cronin 2016).

Strong subsidence in dry regions, theoretically predicted by the RCE instability study of

Emanuel et al. (2014), further promotes the formation of low-level clouds. These in turn

enhance the radiative cooling, forming radiatively driven cold pools in dry regions

responsible for the clumping of convection in the rest of the domain. Note that these

radiatively driven cold pools are colocated with the dry regions and therefore do not mix

boundary layer air between moist and dry regions, whereas ‘‘conventional cold pools’’

(defined here as cold pools resulting from downdrafts caused by rain evaporation and/or

condensate loading) can propagate from moist to dry regions and tend to slow or weaken

aggregation (cf. Jeevanjee and Romps 2013).

2.2.2 Surface Fluxes

Feedbacks involving surface enthalpy fluxes favor the initiation of self-aggregation due to

larger surface winds in the moist, convecting area, which enhance the up-gradient MSE

transport associated with the radiatively driven cold pool discussed above. However, while

sensitivity runs with homogenized surface fluxes (no feedback) sometimes do not aggre-

gate (Tompkins and Craig 1998; Bretherton et al. 2005; Wing 2014), they can aggregate

depending on the domain size, strength of the surface fluxes imposed, and availability of

radiative feedbacks (Muller and Held 2012; Holloway and Woolnough 2016). Therefore,

surface fluxes feedbacks are not critical for aggregation to occur, at least at current

temperatures.

2.2.3 Shortwave Radiation

The direct, diabatic effect of shortwave radiation is a positive feedback on aggregation due

to variations in the absorption of shortwave radiation by water vapor (Wing and Emanuel

2014), but it is weaker than the longwave and surface flux feedbacks. In sensitivity

experiments that include both direct and indirect (dynamic response to the diabatic forcing)

effects, shortwave feedbacks slightly oppose aggregation. Either way, the impact of

shortwave radiation appears to be secondary, at least at current temperatures.

2.2.4 Moisture–Convection Feedbacks

Moisture–convection feedbacks, in which convection moistens the atmosphere and is also

more likely to occur in moister conditions, amplify the instabilities leading to self-ag-

gregation (Tompkins 2001; Mapes and Neale 2011; Emanuel et al. 2014). When radiation

feedbacks (which are normally required for self-aggregation) are suppressed while rain

evaporation is also suppressed (preventing conventional cold pools which can otherwise
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weaken aggregation), these moisture–convection feedbacks are strong enough to cause

aggregation on their own (Muller and Bony 2015; Holloway and Woolnough 2016). This

appears to occur through a process similar to the coarsening process in Craig and Mack

(2013) in which initial perturbations of a bistable system grow over time. These feedbacks

are difficult to quantify directly, even in models, and they would also be difficult to target

in observations. A place to start (perhaps using field campaign data) would be to correlate

convective activity with moist (high MSE) locations and then to estimate the transport of

MSE (part of the convergence term in the MSE spatial variance budget) due to circulations

forced by this anomalous convective heating.

2.3 Sensitivity to SST

Several aspects of self-aggregation are sensitive to SST, such as its initiation mechanisms,

spatial scale, and perhaps degree of organization (Khairoutdinov and Emanuel 2010; Wing

and Emanuel 2014; Emanuel et al. 2014; Wing and Cronin 2016; Coppin and Bony 2015;

Abbot 2014; Holloway and Woolnough 2016). It is worth noting that self-aggregation is

found at temperatures much colder than our current climate, including 243 K in snowball

Earth simulations (Abbot 2014) and 280 K in long-channel experiments (Wing and Cronin

2016), as well as much warmer (e.g., 310 K, Wing and Cronin 2016). The radiatively

driven cold pools discussed above seem to be most efficient at cold and current temper-

atures (Fig. 1, Coppin and Bony 2015), possibly because climate models with strong

positive low-cloud feedback (like the model used in that study) do not have any low clouds

at high temperatures. However, cloud radiative feedbacks may behave differently at much

colder temperatures (Wing and Cronin 2016) and clear-sky longwave feedbacks are

favored by warm temperatures (Emanuel et al. 2014). At warm temperatures, surface-flux-

wind feedbacks in the high-MSE convective region are the leading mechanism for self-

aggregation in GCM simulations (Fig. 1, Coppin and Bony 2015).

In their semiempirical model of self-aggregation based on cloud-permitting simulations

at present-day temperatures, Bretherton et al. (2005) found a slightly stronger sensitivity of

radiative fluxes to moisture than that of surface fluxes. These sensitivities are likely to be

different at different temperatures.

2.4 Maintenance Processes

Given that the real tropical atmosphere is never starting from a homogeneous background

state, as in the idealized simulations, the processes that maintain existing convective

aggregation may be easier to observe than those initiating it. While the strongest positive

feedbacks in the early stages of idealized self-aggregation are usually found in the dry

region, at later times strong consistently positive feedbacks are found only in the moist

region. Muller and Held (2012) and Muller and Bony (2015), which find low clouds to be

necessary for the initiation of aggregation using mechanism denial experiments, find that

low clouds are not necessary to maintain self-aggregation in their simulations. Instead,

high clouds in the moist regions and clear-sky longwave feedbacks can maintain aggre-

gation (Muller and Held 2012; Wing and Emanuel 2014; Muller and Bony 2015; Wing and

Cronin 2016). Possible sensitivity of these maintenance processes to SST is discussed in

Sect. 4 below.

Surface flux feedbacks are neither necessary nor sufficient to maintain non-rotating

aggregation (Holloway and Woolnough 2016), at least at current climate temperatures.

Indeed, the surface flux feedback becomes negative in later stages of non-rotating
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aggregation, due to the opposing influences of surface winds and air–sea enthalpy dise-

quilibrium (Wing and Emanuel 2014). However, surface flux feedbacks could behave

differently in simulations with an interactive SST calculated from surface energy balance.

Quantifying the strength of these maintenance feedbacks in observations would be

desirable. As in the simulations discussed earlier, the radiative and surface flux feedbacks

could be diagnosed by their contributions to the MSE spatial variance budget. These

require simultaneous measurements over a large area of the top-of-atmosphere and surface

radiative fluxes, as well as observed surface enthalpy fluxes and vertically integrated MSE.

Alternatively, an MSE temporal variance budget could be computed at a given location,

assuming that with time, both the dry and moist regions of aggregated convection would

pass over the station. Methods for estimating quantities needed to calculate these terms

using satellite data are explored in Sect. 5.1. The strength of the radiative and surface flux

feedbacks could also be correlated with the degree of aggregation as measured by SCAI

(defined in Tobin et al. 2012). Tobin et al. (2013) used SCAI calculated from observations

to suggest that intraseasonal variations of aggregation tend to amplify dynamical

anomalies. Similarly, recent work compositing on MJO events during the DYNAMO field

campaign has shown that radiation and, to a lesser extent, surface heat fluxes play an

important role in amplifying MJO variability (Sobel et al. 2014), revealing potential links

to the aggregation work proposed here.

3 Comparing the Idealized World to the Natural World

In addition to process-oriented studies, observations can also be used to test the realism of

the mean state, variability, and convective characteristics of the idealized models. Here we

explore similarities and differences between these aspects of idealized simulations of self-

aggregation and observations. We also discuss processes that are not usually captured by

idealized models, such as ocean interaction. Linking self-aggregation processes to envi-

ronments with further complexity, such as non-uniform SST or the effects of land and

orography, is not addressed here but deserves future investigation. The motivation for this

section is that, in order to have confidence in the relevance of self-aggregation processes

found in idealized simulations for observed convective organization, we need to be able to

understand and explain differences between the idealized world and the natural world.

3.1 Time Scales of Self-Aggregation

One common critique of idealized self-aggregation is that the time scale of the aggregation

process is much longer than typical time scales for observed convective organization. This

is a valid concern, but there are several rebuttals which are discussed below. First, there is a

broad range of time scales for self-aggregation and disaggregation in the literature, and

these appear to depend on model, domain size, resolution, initial conditions, SST, and the

inclusion or suppression of processes such as conventional cold pools. Second, self-ag-

gregation from homogeneous initial conditions includes the spin-up of small-scale con-

vective activity and clustering without pre-existing large-scale features, and while we can

learn a lot from these early stages they are not likely to occur simultaneously across a large

region in the real world where asymmetries are always present. Third, while it is likely that

the processes important for idealized self-aggregation are not important for all types of

convective organization in nature, and may be less important for rapidly organizing
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convective systems, some types of organized convection (particularly on longer time

scales) do show intriguing links to self-aggregation.

As mentioned in Wing et al. (2017), self-aggregation in idealized models can take

15–100 days or more to reach a relatively stable aggregated state when starting from

homogeneous initial conditions (though the longer time scales likely relate to an initial

gestation period in some simulations which occurs before aggregation has started at all).

There is some sensitivity of this to domain size and grid scale (Muller and Held 2012).

When rain evaporation and conventional cold pools were suppressed, Holloway and

Woolnough (2016) found that the time scale decreased to only 8 days as opposed to

16 days in their control run, supporting the idea proposed in Jeevanjee and Romps (2013)

that conventional cold pools slow or suppress aggregation in idealized simulations. Perhaps

also relevant to understanding processes that keep convective clusters organized in nature,

Muller and Held (2012) and Holloway and Woolnough (2016) both found a disaggregation

time scale (which is the time needed to return to a less aggregated equilibrium) as small as

10 days when simulations were initialized with an aggregated state and then interactive

radiation was suppressed.

Wing (2014) found that the spatial MSE variance grew with an e-folding time of

�11–13 days. As mentioned in Wing et al. (2017), this kind of exponential growth will

lead to much larger scales in a given amount of time when starting from larger initial

clustering, as is typically found in nature. In other words, much of the time scale for self-

aggregation from homogeneous initial conditions may not be especially relevant to com-

parisons with nature because these time periods involve spinning up mesoscale activity

from extremely small initial length scales (and may also involve gestation periods before

aggregation begins at all). In fact, convective cluster growth across scales (but especially at

larger scales) was found to be linked to radiative feedbacks in near-global RCE channel

runs (including rotation) in Bretherton and Khairoutdinov (2015), with e-folding time

scales of 6–14 days. Those authors suggest that diabatic feedbacks (mainly longwave

radiation feedback) may be especially important for large-scale convective organization

such as the MJO.

3.2 Mean Wind and Wind Shear

Most idealized RCE studies have no imposed mean wind or wind shear. While wind shear

can act to enhance some kinds of mesoscale organization such as squall lines (e.g., Houze

2004; Muller 2013), it has also been shown to slow or prevent self-aggregation in idealized

simulations such as those in Bretherton et al. (2005) and Khairoutdinov and Emanuel

(2010), although the latter found that there was hysteresis, since an already aggregated

state did not disaggregate with some levels of imposed shear.

Nonzero mean vertical velocity due to large-scale circulations is common in regions

containing organized tropical systems in nature but cannot occur for the domain mean in a

typical RCE setup. Global-scale simulations, however, do represent these circulations (e.g.,

Coppin and Bony 2015), and smaller RCE simulations can impose them (e.g., Su et al.

2000) or parameterize them using reference profiles and assumptions of weak temperature

or pressure gradients (e.g., Sessions et al. 2016). As these kinds of modeling studies

progress, there will be more opportunities to evaluate their simulated relationships between

aggregation and large-scale circulations using observations.

Surv Geophys (2017) 38:1199–1236 1211

123



3.3 Humidity Profiles

One of the potentially unrealistic aspects of self-aggregation as seen in idealized models

that needs to be reconciled with observations is the presence of very dry humidity profiles

that occur in the non-convecting areas of the domain. Since humidity plays a key role in all

of the feedbacks important for self-aggregation, it is especially important to investigate this

issue. To that end, we include here some examples of humidity profiles (and the related

radiative heating profiles) in moist and dry areas of simulated self-aggregation. These

profiles are from the simulations presented by Wing and Cronin (2016). We show profiles

from two simulations: one with a square domain that is 1536 km � 1536 km in the hor-

izontal (sq) and one that is an elongated channel with dimensions of 12,288 km � 192 km

in the horizontal (ch). The sq simulation has one circular, intensely precipitating moist

cluster while the ch simulation has multiple moist and dry bands. All other aspects of the

simulations are identical.3 Fig. 4 shows water vapor mixing ratio and relative humidity in

the moist and dry areas, averaged over the last 10 days of the two simulations. In Fig. 4a,

the ‘‘moist’’ area is defined as the area where the CWV is greater than 80% of the

maximum CWV found in the last 10 days of simulation. The rest of the domain is clas-

sified as the ‘‘dry’’ area. Profiles using an alternate definition of moist and dry areas are

shown in Fig. 4b, in which the ‘‘dry’’ and ‘‘moist’’ areas are the driest 10% and moistest

10% of the domain according to CWV. Here, we show profiles from both the developing

and mature stage of aggregation, using 5-day averages centered at day 10 and day 70,

respectively. Figure 4c, d show similar plots to Fig. 4a, b but for relative humidity, with

ranking done according to column relative humidity (CRH, defined as CWV divided by

column-integrated saturation specific humidity) instead of CWV.

As shown in Fig. 4, the water vapor mixing ratio and relative humidity are substantially

reduced in the dry regions relative to the moist regions at all levels (including the boundary

layer), but most strongly in the mid-troposphere. The difference between the dry and moist

regions is stronger for the sq simulation than the ch simulation, reflecting the more extreme

(and arguably less realistic) aggregation that occurs in square domain simulations. There is

significantly more radiative cooling in the dry regions than the moist regions, especially in

the lower troposphere (Fig. 5), which further amplifies the anomalies.

These results naturally lead to several questions about how representative these ideal-

ized simulations are of humidity variability in the real tropics. The behavior of the

humidity profiles across the different evolutionary states of aggregation in the simulations

(from developing to mature aggregation) is interesting; substantial drying is present in the

upper troposphere as early as day 10, but drying of the middle–lower troposphere and

boundary layer does not appear until later in the simulation (Fig. 4b, d). One potential

avenue of research to link this to observations is to relate the evolution of humidity in the

dry regions and the stage of aggregation to the altitude depth of the bimodality of water

vapor (Mapes 2001, 2016; Zhang et al. 2003). However, a more basic starting point is to

determine whether humidity in the tropics exhibits a similar range of variability between

dry and moist conditions: do humidity profiles as dry as the ones in simulated aggregation

exist in the real tropics?

3 SST = 305 K, no rotation, diurnal cycle of insolation at 19.45 N at perpetual Julian day 80.5, Rapid
Radiative Transfer Model (RRTM) radiation scheme, 3 km horizontal resolution, 64 vertical levels, rigid lid
at 28 km, doubly periodic lateral boundaries, initialized with white noise in boundary layer temperature
field.
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As a first step toward answering this question, we compare the humidity data from the

idealized simulations in Wing and Cronin (2016) to twice-daily radiosondes from Nauru in

the Pacific warm pool. Figure 6 shows humidity profiles from 5 years of the Nauru

radiosondes. These data span the period from April 1, 2001 to August 16, 2006 and are

from the former Atmospheric Radiation Measurement (ARM) site (Mather et al. 1998;

Long et al. 2016). The data, which include 3491 retained sondes, are described in more

detail in Holloway and Neelin (2009). Figure 6a shows mean specific humidity profiles of

two subsets of sondes divided by a CWV threshold of 0.8 times the 99th percentile of

CWV (55 mm, the 63rd percentile). Despite coming from a range of SSTs which are

generally a few degrees cooler than 305 K, these profiles look quite similar to the mixing

ratio profiles from the ch simulation shown in Fig. 4a, while the sq simulation in that
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Fig. 4 Profiles of water vapor mixing ratio (top panels) and relative humidity (bottom panels) in
simulations in elongated channel (solid lines) and square (dashed lines) domains. The left panels define
moist regions (blue) as area where CWV� 0:8 maxðCWVÞ [or CRH� 0:8 maxðCRHÞ in panel c], dry
regions (red) defined as the rest of the domain; the profiles are averaged over the last 10 days of the
simulation. The right panels show profiles from the moistest (shades of blue) and driest (shades of red) 10%
of the domain, according to CWV [or CRH in d]. Profiles from both the developing (5-day average centered
at day 10; lighter colors) and mature (5-day average centered at day 70; darker colors) stages of aggregation
are plotted. a q where CWV[/\0.8 max (CWV), b q in moistest/driest 10% of domain, c RH where CRH
[/\ 0.8 max (CRH) and d RH where CRH[/\ 0.8 max (CRH)
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figure shows much more spread between moist and dry profiles. Similarly, the extreme

moistest 10% and driest 10% of sondes in Fig. 6b are much more similar to those for day

70 of the ch simulation than for day 70 of the sq simulation in Fig. 4b; indeed, the extreme

10% quantiles in the sq simulation at day 70 within the lower and middle free troposphere

are much more extreme than even the extreme 1% quantiles for the sondes. The driest 10%

quantile in the sq simulation at day 70 suggests that air is subsiding from the upper

troposphere down to almost 900 hPa without encountering significant moistening by

mixing or convection, something not seen in the observations.

Figure 6c, d shows similar analysis to Fig. 6a, b but for relative humidity (defined with

respect to ice for temperatures below 0�C) and CRH. Note that, even for the driest 1% of

sondes, relative humidity in the boundary layer is always above 65% on average. The

corresponding profiles for the simulations in Fig. 4c, d are consistent with the ch simu-

lation being more realistic than the sq simulation, at least regarding humidity variability.

Note that the near-surface relative humidity averaged for the driest 10% of the domain in

the sq simulation at day 70 is about 10% drier (in relative humidity units) than the average

for the driest 1% of sondes at Nauru.
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Table 1 compares surface observations of relative humidity at Nauru with relative

humidity at the lowest model level (37 m) in the ch simulation from Wing and Cronin

(2016). The values for most of the percentiles are comparable, except the simulation has a

much lower minimum value than the Nauru observations (32.5% compared to 52.0%).

Figure 7 shows contour plots of all 3491 sondes ranked by CRH and divided into 100

equally populated bins. These show both relative humidity and saturation deficit (saturation

specific humidity minus specific humidity). A similar plot for the ch simulation from Wing

and Cronin (2016) is shown in Fig. 8, and Fig. 7d can be additionally compared with a

similar figure from day 90 of the square simulation at 305 K SST in Wing and Emanuel

(2014, their Fig. 11). That figure shows that the square simulation has a large spread in

relative humidity between 1 and 2 km height of about 100% between moist and dry
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Fig. 6 Nauru radiosondes: a mean profiles of water vapor specific humidity (g kg�1) for all sondes with
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regions, while the Nauru sondes show a spread of 60% at most in that layer and a much

larger number of bins with small anomalies. The channel simulation (Fig. 8), on the other

hand, is much more comparable to the Nauru sondes, indicating that this simulation has

realistic humidity variability.

Radiosondes from other tropical locations, such as the Bay of Bengal and the eastern

tropical Pacific, also reveal significant variability in mid- and upper-tropospheric relative

humidity and little variation in boundary layer moisture (e.g., Zuidema et al. 2006; Zui-

dema and Mapes 2008), though these locations are subject to large-scale circulations that

can bring remote influences from neighboring landmasses. Radiosondes from the equa-

torial Indian Ocean also demonstrate that most of the relative humidity variability is

contained within the middle troposphere (Johnson and Ciesielski 2013), where the sig-

nature of self-aggregation may be first detected (Mapes 2016).

There are reasons to expect that the Nauru sondes and tropical sondes from these other

locations would not necessarily look exactly like idealized self-aggregation simulations (or

indeed, would not be representative of tropical maritime observations more generally). For

instance, these sondes are generally launched from islands, which could have local effects

on convection, and transport of air from landmasses or higher latitudes could also cause

differences compared with idealized conditions. Additionally, we may not necessarily

think of idealized aggregated convection as something that would or should be represen-

tative of typical tropical conditions anyway.

However, since humidity variability is fundamentally linked to both the contributing

processes and large-scale impacts of self-aggregation, it is important to consider possible

reasons why the channel simulation appears to have more realistic humidity variability,

while the square simulation is too extreme. One possibility is that the channel simulation is

‘‘getting the right answer for the wrong reason’’, for instance because its quasi-2D

geometry leads to a spurious strong wind shear similar to that found in 2D simulations in

Held et al. (1993). Although the channel simulation does have tropospheric along-channel

mean wind and vertical wind shear that are larger than values in the square simulation, the

channel values are of order 1m s�1 for both quantities, and this is not overly strong

compared with typical tropical mean values. The channel simulation is 192 km wide,

which allows for multiple convective systems and associated cold pools to exist and

propagate along the shorter dimension. Subsidence in the driest regions is actually stronger

in the channel simulation relative to the square simulation, though ascent in the moist

regions is weaker. While determining the reasons for the differences between the simu-

lations is beyond the scope of this paper, it is likely that the channel simulation has more

Table 1 Values of surface relative humidity (%) at Nauru (averaged from station data over 1 h centered
around on each sonde launch time) and lowest model level (37 m) relative humidity (%) in the 305 K
Channel simulation from Wing and Cronin (2016)

Percentile Nauru Channel simulation

Minimum 52.0 32.5

1st 57.9 58.6

25th 70.8 69.9

50th 76.8 73.5

75th 82.3 77.5

99th 92.8 93.0

The statistics from the channel simulation are computed over the final 25 days of that simulation
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mixing and transport between convective and subsidence regions—animations (not shown)

reveal that boundaries between convective and subsidence regions are less stationary, and

closer to the center of subsidence regions, in the channel simulation.

While the above discussion does not definitively endorse one model domain geometry

over another, this type of analysis is informative in starting to address the extent to which

idealized aggregated convection is similar to organized convection in the real world, and

we hope that it helps frame future comparisons with other data. For instance, analysis

tracing air particles back to their time of last condensation within both a modeling
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construct and observations could be helpful (e.g., Pierrehumbert 1998), as well as a

spectral analysis to determine if key time scales are matched within both.

3.4 Equatorial Wave Dynamics

Earth’s latitudinally varying rotational effects on large-scale horizontal motions result in

equatorial wave dynamics which help shape tropical convective organization. For instance,

the MJO interacts with equatorially trapped moist Kelvin and Rossby waves, and

these dynamics are also important for the development of the Hadley Circulation, the
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Fig. 8 As in Fig. 7 but for channel simulation at 305 K from Wing and Cronin (2016). a Saturation deficit
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inter-tropical convergence zone (ITCZ), and monsoons. While self-aggregation is gener-

ally defined not to include the effects of a latitudinally varying Coriolis parameter, a few

studies have looked for the processes that lead to self-aggregation in simulations that do

include such effects. Bretherton and Khairoutdinov (2015) found that radiative feedbacks

were likely to be important mainly for large-scale convective organization in their near-

global RCE channel runs. Arnold and Randall (2015) performed global aquaplanet sim-

ulations (using a superparameterization setup in which 2D CRMs are embedded in each

large-scale model grid cell) with uniform SST both with and without rotation and found

similarities in diabatic feedbacks between the self-aggregation in the non-rotating setup

and the MJO in the rotating setup. Holloway (2017) found that simulations of real near-

equatorial case studies using a limited-area CRM setup also showed similarities to ideal-

ized self-aggregation, although the effects of suppressing interactive radiation were con-

strained by the imposed lateral boundary conditions. More studies are needed to probe

links between self-aggregation and convective organization that interacts with equatorial

wave dynamics.

3.5 Ocean Interaction and Feedback

Nearly all studies of self-aggregation have used atmosphere-only simulations. However,

there are a few studies that have used coupled models, and they generally find that ocean

coupling slows or prevents self-aggregation. For instance, an interactive slab ocean

experiment slowed down self-aggregation in Bretherton et al. (2005), possibly because of

cloud shading. That experiment had a 60Wm�2 imposed ocean cooling to represent large-

scale ocean or atmospheric transport, and after aggregation the SST cooled rapidly due to

increased longwave cooling. Khairoutdinov and Emanuel (2010) used a 2-m slab ocean but

homogenized the SST horizontally at each time step (thus removing effects like cloud

shading) and also found that SST dropped after aggregation occurred. They noted hys-

teresis, since cooler SSTs could still maintain aggregation that had already been present but

could not sustain self-aggregation from homogeneous conditions. Popke et al. (2013)

performed global-tropics RCE runs using parameterized convection (with no rotation and

homogeneous solar forcing) coupled to a slab ocean and found that large convective

clusters formed along with transient SST anomalies. Reed et al. (2015) performed similar

global-tropics RCE runs and found that, although ocean coupling slows aggregation

compared to runs with fixed warm SSTs (302 K) in agreement with other studies, runs with

fixed cool SSTs (as low as 295 K) result in much less organization than runs with similar

SSTs and an interactive slab ocean, suggesting a possible link between ocean coupling and

the sensitivity of aggregation to SST.

Coppin and Bony (2017) also ran global-tropics RCE simulations without rotation and

coupled to a slab ocean and found that the coupled RCE system exhibits some internal

variability, arising from the interplay between SST, SST gradients and aggregation. The

time scale of this variability depends on the depth of the ocean mixed layer, and for a large

range of depths, it occurs at the interannual time scale, suggesting a possible link to

internal modes of variability in the real tropical ocean atmosphere system such as El Niño

Southern Oscillation (ENSO). They also showed that, at this time scale, the relationship

between SST and aggregation could be very different from (or even opposite to) that found

in prescribed SST simulations or in coupled RCE simulations on long time scales.

Hohenegger and Stevens (2016) ran high-resolution coupled RCE runs (without

imposed ocean cooling, but with reduced solar insolation equivalent to that averaged over
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the full Earth rather than the tropics) and found that aggregation seemed to prevent a

runaway greenhouse effect, providing ‘‘radiator fins’’ to the idealized climate in the dry

subsiding regions analogous to the role of the subtropics proposed by Pierrehumbert

(1995). They also found that slab oceans with small depths can slow or prevent self-

aggregation, similar to studies mentioned above. This delay stems from the development of

SST gradients which cause a low-level circulation opposing the one that favors self-

aggregation. Furthermore, Hohenegger and Stevens (2016) suggest that cloud feedbacks

and resulting aggregation and coupled equilibrium states are very different at high reso-

lution using explicit convection versus similar runs using parameterized convection from

Popke et al. (2013), showing another example of model disagreement with regards to these

processes.

While atmosphere–ocean coupling has been extensively studied for large-scale tropical

convective phenomena such as the MJO (cf. DeMott et al. 2015), observational work is

needed to explore the interactions between organized tropical convective systems and SST

or sea surface salinity across scales. Specifically, this analysis could look at processes

important for aggregation in idealized models.

4 Observational Perspectives on Aggregation in a Warming Climate

Several modeling studies suggest that convective aggregation depends on surface tem-

perature, although the exact nature of this dependence remains uncertain. The initiation of

aggregation is found to occur more easily at certain temperatures (Coppin and Bony 2015),

particularly when considering a given domain size (Wing and Emanuel 2014). Once ini-

tiated, the clumping of aggregation in some studies tends to strengthen as the surface

temperature rises (Coppin and Bony 2015), though other studies find that the degree of

aggregation is relatively insensitive to SST (Wing and Cronin 2016; Holloway and

Woolnough 2016; Hohenegger and Stevens 2016). Several interpretations have been

proposed for the temperature dependence of the initiation mechanisms (Sect. 2.3). Some of

them invoke the nonlinearity of the Clausius–Clapeyron relationship, the sensitivity of the

clear-sky longwave radiative cooling of the atmospheric column to lower-tropospheric

longwave opacity (Emanuel et al. 2014), or the sensitivity of the low-cloud cover to

temperature (e.g., Coppin and Bony 2015; Wing and Cronin 2016; Holloway and Wool-

nough 2016), and these temperature dependences differ across models. On the other hand,

the interaction between temperature, high-cloud radiative effects, and dynamics has been

proposed by Bony et al. (2016) as a mechanism for stronger clumping of convection at the

aggregated equilibrium state over warmer surfaces. That study argues that, owing to the

dependence of static stability on temperature and pressure, as the climate warms anvil

clouds not only rise to a higher altitude but also shrink in horizontal area. This behavior,

referred to as the ‘‘stability-iris’’ effect in Bony et al. (2016), concentrates the atmospheric

cloud radiative effects of anvil clouds and enhances the horizontal gradients in atmospheric

radiative cooling (enhancing the cooling in subsiding areas and reducing it in convective

areas), which could lead to enhanced convective aggregation.

Given the implications that a dependence of convective aggregation on temperature

may have for climate (Sect. 1.1), it is important to verify whether this dependence seen in

some models is confirmed by observations. However, very few studies have investigated

this issue so far. Long time series of convective aggregation indices have now been
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produced (e.g., Tobin et al. 2012; Tan et al. 2015), but they have not been analyzed in this

perspective yet.

What has been investigated, on the other hand, is the temperature dependence of various

large-scale organized convective phenomena that share many characteristics with con-

vective aggregation in idealized models. One of these is the MJO, which likely represents a

very large-scale manifestation of convective aggregation in the tropics (Khairoutdinov and

Emanuel 2010; Arnold and Randall 2015). There is modeling evidence that MJO activity

increases when the climate is warming (e.g., Caballero and Huber 2010; Arnold et al.

2015), though MJO-like behavior has been found even at temperatures as cold as 1 �C
(Pritchard and Yang 2016); this finding of increased MJO activity with increased SST in

models is qualitatively consistent with observations that suggest linear increases in the

intensity and number of MJO events over the last 50 years (Jones and Carvalho 2006).

Tropical cyclones likely constitute another spectacular manifestation of convective

aggregation. But unfortunately, no such consistency has yet been reached between their

modeled and observed behavior with temperature. Idealized RCE simulations performed in

a rotating framework suggest that the number of tropical cyclones decreases as surface

temperature rises, while their intensity and precipitation rate increases (Nolan et al. 2007;

Held and Zhao 2008; Khairoutdinov and Emanuel 2013). Climate projections made with

general circulation models also suggest such a tendency, although the relationship between

tropical cyclones and temperature very much depends on the metrics used for warming

(Knutson et al. 2013). On the observational side, however, trends in tropical cyclones and

their relationship to temperature remain elusive (Stocker et al. 2013). This is partly due to

the limited availability and quality of long-term historical records, but also to the large

number of global and regional factors that influence the occurrence and intensity of tropical

cyclones. In particular, it is difficult to disentangle a trend associated with global warming

from records which are either too short or associated with an insufficient geographical

sampling. Another source of complication stems from the fact that tropical cyclone activity

does not only depend on absolute surface temperature: it is also affected by factors such as

the temperature difference between the surface and the tropopause (Emanuel 1987), the

local surface temperature relative to the tropical mean (Lin et al. 2015), the wind shear and

mid-tropospheric humidity (Tang and Emanuel 2010), and the upper ocean stratification

(Emanuel 2015), and these factors are strongly modulated by the decadal to multi-decadal

natural climate variability.

To confirm or refute modeling inferences regarding the temperature dependence of

convective aggregation, another approach consists of using observations to test the phys-

ical processes that contribute to this dependence in models. One such process is the

reduction of the anvil cloud amount as the climate warms (Bony et al. 2016). Some

observational studies suggest that, on average over the tropics, the anvil cloud amount

decreases as the surface temperature increases (Zelinka and Hartmann 2011; Igel et al.

2014) as shown in Fig. 9 reproduced from Igel et al. (2014), but other studies do not find

strong evidence for such a relationship (Stein et al. 2017). These differences may result

from methodological differences: in contrast with other studies, Stein et al. (2017) consider

the dependence of anvil cloud amounts on surface temperature for given precipitation and

large-scale forcings, which amounts to comparing situations having a fairly similar con-

vective mass flux, and therefore a weaker change in anvil cloud amount with temperature.

Also, Stein et al. (2017) and Igel et al. (2014) are only comparing local SSTs colocated

with specific cloud scenes, whereas the reduction of anvil cloud amount with warming may

be more sensitive to the tropical mean SST, which is the metric used in Zelinka and

Hartmann (2011). And Igel et al. (2014) study anvil cloud per individual cloud object, not
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total anvil fraction, but Stein et al. (2017) find that SCAI values increase with SST,

meaning that there are more (and smaller) anvil cloud clusters for warmer SSTs, which

could cancel out effects of smaller anvil size per cluster. Additional methodological dif-

ferences may also contribute to these conflicting results, and they will have to be clarified.

More generally, several methodological issues complicate attempts to investigate the

relationship between temperature and convective aggregation in observations. First, unlike

idealized modeling studies forced by uniform boundary conditions, the Earth’s climate is

associated with gradients in surface temperature which strongly influence large-scale

vertical motions in the tropics. As is widely recognized, at the regional scale clouds and

convection are much more influenced by the large-scale atmospheric circulation than by

local surface temperature (Hartmann and Michelsen 1993; Bony et al. 1997). For this

reason, relationships between convective aggregation and surface temperature derived

from regional investigations do not necessarily reflect an intrinsic dependence of aggre-

gation on temperature. Second, there is abundant evidence that the relationship between

temperature and water vapor or clouds can differ on short versus long time scales (e.g.,

Dessler 2010). Relationships inferred from observed climate variations on seasonal or

interannual time scales may thus differ from the temperature dependence of convective

aggregation on decadal time scales and under long-term climate change. Recent results

suggest that this might also be the case for coupled RCE simulations (Coppin and Bony

2017), although the extent to which this result applies to other models remains unknown.

Finally, models suggest that convective aggregation can behave very differently in cold

and warm climates. For instance, Abbot (2014) predicted stronger convective aggregation

on a Snowball Earth than in the modern climate, but observations of clouds and convection

Fig. 9 Composites of anvil
cloud objects derived from
CloudSat observations: the width
of anvil clouds is found to
decrease as surface temperature
increases. From Igel et al. (2014)
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are only available for a limited time period and thus for a very narrow range of surface

temperatures. To explore possible changes in convective aggregation in more drastically

different ranges of temperature, one must consider paleoclimatic changes using proxy data.

Techniques of paleotempestology offer opportunities to reconstruct tropical cyclone

activity at different periods of the past and for a range of time scales (e.g., Liu and Fearn

2000; Donnelly and Woodruff 2007) and could be very useful for this purpose. The

isotopic composition of water is very sensitive to the organization of convection (e.g.,

Lawrence et al. 2004; Risi et al. 2008), and therefore long-term isotopic records (as well as

recent satellite observations of water isotopes) could be used to explore changes in con-

vective organization with climate.

5 Future Observational Aspirations

Much remains to be done in terms of observing convective aggregation. Using satellite

observations, the variability of aggregation at different time scales could be investigated, as

well as its relationship to local and remote surface and atmospheric conditions. Besides

this, it would be nice to investigate whether the physical mechanisms found to play a role

in the initiation of aggregation in models can also be observed in nature. For instance, is

there evidence for the formation of radiatively driven cold pools in the dry areas of the

tropics? Will future space missions such as the ADM-Aeolus wind lidar mission (Reite-

buch 2012) help observe the interplay between low clouds and shallow circulations in the

vicinity of deep convection? Will they help us observe radiatively driven cold pools? Can

we observe signs of convective self-aggregation? To address these questions, one may

analyze observations from field experiments such as those collected during AMIE/

DYNAMO in the Indian ocean (Feng et al. 2015) or in the tropical Atlantic as part of the

NARVAL-EUREC4A campaigns (Stevens et al. 2015; Bony et al. this issue). One may

also think of organizing a field campaign specially dedicated to these questions.

The ISSI workshop in February 2016 on ‘‘Shallow clouds and water vapor, circulation

and climate sensitivity’’ brought together scientists using numerical simulations to study

convective organization with scientists at the forefront of observational work, including

experts on remote sensing of clouds and their environment. In this section, we present

some perspectives on novel approaches to using satellite data to observe convective

aggregation and the processes discussed above. Another paper (Lebsock this issue) also

presents some promising new work along these lines using CloudSat and other A-Train

satellites, complementing work by Stein et al. (2017). We also propose another possible

way forward using a ground-based observational network.

5.1 Evolution of Convective Organization Using Satellite Data

The physical processes of convective self-aggregation involve a range of elements from the

dynamics of convective systems to the thermodynamics of their rain-free environment. In

this section, we review recent work with unique ideas of exploiting the existing satellite

capability to study precipitating cloud systems and the surrounding atmosphere. The

potential utility of such satellite observations in addressing different aspects of convective

self-aggregation is also discussed.

The variability in the large-scale atmospheric state associated with a life cycle of

convective systems has been examined with a suite of satellite measurements by Masunaga
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(2012) and several subsequent papers. Since the sporadic nature of low-Earth orbiting

(LEO) satellite overpasses with high-inclination orbits makes it difficult to continuously

monitor subdaily scale variations, the variability is statistically reproduced by projecting a

large number of snapshots obtained from multiple LEO satellites onto a composite time

series. For instance, temperature and humidity profiles from the Atmospheric Infrared

Sounder (AIRS) aboard the Aqua satellite are combined with the Tropical Rainfall Mea-

suring Mission (TRMM) Precipitation Radar (PR) so that the evolution of the ambient

sounding is constructed over the hours before and after convection develops (Masunaga

2012).

Masunaga (2013) applied water and heat budget analysis to this composite time series.

The moisture and MSE (denoted by h) budget equations integrated vertically over the

troposphere are:

o

ot
hqi þ hr � qvi ¼ E � P ð1Þ

and

o

ot
hhi þ hr � hvi ¼ Sþ LvE þ hQRi; ð2Þ

where h� � �i designates the vertical integral over the whole troposphere, the overbar denotes
horizontal averaging over a large-scale [O(100 km)] domain, q is specific humidity, v is

horizontal wind, E is surface evaporation, P is surface precipitation, S is surface sensible

heat flux, Lv is the latent heat of vaporization, and QR is the radiative heating rate. Each

term on the rhs of (1) and (2) is available from satellite observations and the tendency term

on the lhs is evaluated from the composite time series, leaving as the only unknowns the

second term of (1) and (2), that is, the horizontal convergence of moisture and MSE

convergence. The vertically integrated moisture and MSE convergences, although not

directly measurable from satellites, are instead derived as the residual in the budget

equations. Note that the quantities calculated for these equations could also be used to

MSE convergence
Q  <0R Q  >0

R

LE + S

moisture convergence
evaporation (LE)
surface precipitation (LPs)

(a) (b)

(c) (d)

Fig. 10 Satellite-derived moisture and MSE budget parameters in composite time series associated with the
development and dissipation of convection. a Moisture convergence (shaded), surface precipitation (solid
line), and surface evaporation (dotted line) for the organized system regime, b as in a but for the isolated
cumulus regime, c MSE convergence (light-shaded), radiative heating (heavy shaded; red where positive
and blue where negative) on the top of MSE convergence, surface heat flux (dotted line) for the organized
system regime. d As in c but for the isolated cumulus regime. All parameters including precipitation and

evaporation are plotted in energy flux units ðWm�2Þ
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calculate the diabatic terms of the MSE spatial variance budget from Wing and Emanuel

(2014) as suggested in Sect. 2.4.

Figure 10 shows the composite evolution of different budget terms for both the ‘‘or-

ganized system’’ and ‘‘isolated cumulus’’ regimes. These two regimes are separated by

applying different thresholds to the areal coverage of TRMM-detected precipitation cells

(i.e.,\25% for isolated cumuli and[50% for organized systems), aimed at delineating the

elements of atmospheric thermodynamics that are favorable or unfavorable for convective

organization (Masunaga 2014). The primary moisture source of precipitation is moisture

convergence during hours around the peak convection in the organized system regime

(Fig. 10a), while precipitation nearly balances out the local moisture supply from surface

evaporation in the isolated cumulus regime (Fig. 10b). In both the regimes, evaporation

stays almost constant over time at � 100–150 W m�2, which suffices to produce modest

rainfall from isolated cumuli but needs to be supplemented by a large dynamically driven

import of moisture to feed organized systems.

The dynamics specific to organized convective systems is illustrated in light of the MSE

budget (Fig. 10c), where MSE convergence stays overall negative but nearly vanishes to

zero as convection intensifies (discussed in detail by Masunaga and L’Ecuyer 2014). The

zero MSE convergence, or neutral gross moist stability (GMS), implies that the import of

moisture is just large enough to drive the large-scale adiabatic ascent and hence allows a

self-sustaining growth of convection (Masunaga 2014). In the isolated cumulus regime

(Fig. 10d), MSE convergence vanishes as in the organized system regime but the enhanced

radiative cooling, owing to reduced high clouds, appears to work against the further growth

of convection that could otherwise occur.

Note that the composite time series above are not to be interpreted as convective self-

aggregation itself being in progress. Idealized simulations demonstrate that convective

self-aggregation proceeds over a week or two (Tompkins 2001) or a few months

(Bretherton et al. 2005; Wing and Emanuel 2014), which is a time scale substantially

longer than the life cycle of individual convective systems (a few days at most) as depicted

in Fig. 10. The isolated cumulus regime and organized system regime, if put into the

context of self-aggregation, may be each a representation of the states before and after the

self-aggregation takes place (or outside and inside the area of aggregated convection).

From this perspective, the convective self-aggregation could be considered as a ‘‘phase

transition’’ from the isolated cumulus regime to the organized system regime. Figure 10c,

d suggests that a key role in the transition, if it occurs, would be the magnitude of radiative

cooling, which is in line with idealized simulations (Muller and Bony 2015) and theories of

convective self-aggregation (Emanuel et al. 2014). This hypothesis may be tested by

separating the composite analysis among different degrees of convective aggregation

using, for example, SCAI (Tobin et al. 2012). With the other environmental conditions

such as SST being equal, a set of composite time series constructed with different SCAI

values would provide an observational test bed to examine the self-aggregation processes

in the context of moisture and thermal budgets. This would be an interesting line of

research to pursue in the future.

5.2 Spaceborne Cloud Radar Approaches

Novel analyses of newer satellite assets that have not traditionally been applied to study

convection may offer potential for advancing our understanding of the coupled radiative

and hydrological responses to convective aggregation. There is growing acceptance of the
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utility of spaceborne cloud radars, in particular, for characterizing the distribution, internal

structure, spatial organization, updraft intensity, and radiative environments of convection.

New methods for discriminating precipitating scenes, isolating convective cores, and

profiling radiative fluxes and heating rates both within cloud and in the adjacent cloud-free

pixels are becoming sufficiently mature to shed new light on the coupled energy and water

cycle impacts of convective aggregation (Haynes et al. 2009; Lebsock and L’Ecuyer 2011;

Henderson et al. 2013; Matus and L’Ecuyer 2017).

Igel and Heever (2015), for example, used CloudSat observations to establish a quan-

titative link between the area of convective anvils and the associated convective cores.

Unlike previous studies that relied on coarser or less direct methods for identifying con-

vective updrafts, the high sensitivity and relatively high spatial resolution of the CloudSat

Cloud Profiling Radar (CPR) provide an unambiguous means of discriminating precipi-

tating and non-precipitating pixels with associated ice cloud area and vertical structure

from a single sensor. Examining nearly 5 years of CloudSat observations over the tropical

oceans, Igel et al. (2014) and Igel and Heever (2015) demonstrate that anvil widths sys-

tematically decrease while anvil temperatures become colder with increasing SST, as

discussed in Sect. 4. In addition, the width of associated cloud object pedestals (the cloud

shapes at the base of the anvils) decreases with increasing SST. These findings could be

consistent with a trend toward more aggregated convection over warmer oceans, though it

should be noted that, as discussed in Sect. 4, these studies look only at anvil size per cloud

object, not at total cloud area or how individual cloud objects are spatially distributed.

Furthermore, these studies do not explicitly control for precipitation intensity or divide

observations into different large-scale circulation regimes, and they look at local SST

rather than tropics-wide SST. Stein et al. (2017) use CloudSat-CALIPSO data to link cloud

amount to aggregation, showing larger areas of anvil cloud and less low cloud in regions

with less large-scale aggregation for a given large-scale rain rate, although they find less

dependence of anvil fraction on (local) SST as discussed in Sect. 4.

The greatest potential of cloud radar observations for advancing theories of convective

aggregation may, however, reside in recent efforts to infer internal dynamics and related

processes (Luo et al. 2010; Nelson et al. 2016). As convection evolves to a more aggre-

gated state, there is reason to anticipate that convective buoyancy and entrainment rates

will change owing to the reduced convective area and cloud lateral boundaries. Luo et al.

(2010) used the difference between cloud top temperature (CTT) and that of the ambient

environment at the radar-defined cloud top height (CTH) to estimate convective buoyancy

and entrainment rates in individual convective systems. CloudSat reflectivity observations

effectively remove the ambiguity between cloud top temperature and height, allowing

buoyancy to be estimated by comparing the observed CTT to the temperature at the CTH

in the environmental sounding. Entrainment rates are then estimated through iterative

application of an entraining plume model to obtain the best match with observed storm

vertical structure. Luo et al. (2010) paint a familiar picture of tri-modal tropical convection

made up of shallow, mid-level congestus, and deep convective modes (e.g., Johnson et al.

1999) but further characterize the composite dynamic processes within each mode. Nearly

all deep convection has negatively buoyant cloud tops and smaller entrainment rates while

congestus can be separated into distinct ‘‘transient’’ and ‘‘terminal’’ modes with positive

and negative buoyancy (smaller and larger entrainment rates), respectively.

Given the challenges associated with directly observing the time evolution of convec-

tive cloud structures on the scales required to observe convective aggregation, it may be

argued that composites of such observation-based estimates of dynamic and thermody-

namic processes will be key to testing model-based inferences regarding the driving
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processes. It is very likely, for example, that transitions from scattered to aggregated states

of convection will be accompanied by a shift in the relative frequencies of convective

states, leading to corresponding changes in domain-mean buoyancy and entrainment rates

that may be measured through a similar approach. While Luo et al. (2010) do not char-

acterize the properties of shallow convection, recent work has demonstrated that evapo-

ration and condensation rates in shallow convection can also be inferred from cloud radar

observations, offering the potential to further address the role of shallow convection in the

transition from isolated to aggregated convection (Nelson et al. 2016).

Spaceborne cloud radar observations also offer potential for testing hypothesized

feedbacks and energy and water cycle impacts of convective aggregation. Luo et al. (2014)

use time-differenced infrared brightness temperatures to relate cloud top vertical velocities

to convective mass transport and precipitation efficiency, two central physical character-

istics linking the causes and effects of convective aggregation. They demonstrate that

stronger updrafts correlate with higher precipitation echo-tops, increased convective mass

fluxes, and heavier rainfall throughout the tropics. While these studies do not definitively

test emerging theories concerning convective aggregation, they attest to the maturity of

novel process-related datasets from cloud radar observations and suggest that pursuing new

ways of integrating spaceborne cloud radar into future studies of convective aggregation is

warranted.

5.3 Feasibility of a Ground-Based Observational Network

Simulations of convective aggregation have shown that there is a marked difference in the

water vapor profiles in the dry and moist regions (Fig. 4), and the longwave radiative

heating difference between the two regions (Fig. 5) results in an up-gradient flow just

above the boundary layer that works to further enhance this moisture gradient (Sect. 2).

This characteristic difference between dry and moist regions is an important indicator of

aggregation, and therefore something that a field experiment could target. In this section,

we discuss the feasibility of such an experiment (for instance as part of a field campaign)

using currently available ground-based instruments.
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Fig. 11 Water vapor mixing ratio profiles from a dry (black) and moist (gray) region of an RCE simulation
(at day 30) where convective aggregation occurred (left), and the corresponding longwave radiative heating
rate profiles computed using the RRTM (right). The error bars on the heating rate profiles were computed
by propagating the uncertainties in the Atmospheric Emitted Radiance Interferometer (AERI) retrieved
profiles through the RRTM
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An example of water vapor profiles from the dry and moist regions in a simulation of

aggregation from Muller and Bony (2015), along with longwave radiative heating rates in

cloud-free scenes computed using a radiative transfer model (RRTM; Mlawer et al. 1997),

are shown in Fig. 11. The differences in the shape of the water vapor profiles result in an

extra 2 K day�1 clear-sky longwave cooling in the boundary layer. This boundary layer

cooling will be enhanced if there are shallow liquid water clouds at the top of the boundary

layer; cumulus are often seen in the dry regions of simulations that show aggregation.

The challenge of any field experiment that aims to investigate the results shown by

numerical simulations of convective aggregation is the ability to observe water vapor

profiles, especially in the boundary layer, with the needed accuracy to yield significant

differences in the computed radiative heating rate profiles (cf. Stevens et al. this issue).

Many different boundary layer thermodynamic profiling technologies are currently being

used; Wulfmeyer et al. (2015) provides a review of these instruments. Satellite sensors

have difficulty observing the thermodynamic structure of the boundary layer, especially if

there are clouds in the scene; the limitations of satellite observations of water vapor also

affect reanalyses (Pincus et al. this issue). Thus, a network of multiple ground-based

remote sensors distributed over some area is the best option if a long duration dataset is

desired to observe the processes that lead to convective aggregation.

Of ground-based sensors, active remote sensors like water vapor Raman lidar and

differential absorption lidar (DIAL) have a special appeal because of their vertical reso-

lution and accuracy. However, there are no commercially available water vapor Raman

lidars or DIALs, and thus any network of lidars would consist of systems from multiple

research groups where each lidar would have its own sensitivity and uncertainties that may

make the analysis of a network of these datasets more challenging. However, there are

commercially available microwave radiometers and infrared spectrometers, and thus a

network composed only of one of these types of instrument would be homogeneous and

potentially easier to analyze.

Passive remote sensors like microwave radiometers and infrared spectrometers observe

radiance, and retrieval algorithms are needed to derive thermodynamic profiles from these

observations. Several studies have investigated the accuracy and information content of

these retrieved profiles. Löhnert et al. (2009) used an instrument system simulation

experiment to demonstrate that infrared spectrometers such as the Atmospheric Emitted

Radiance Interferometer (AERI, Knuteson et al. 2004a, b) have 2–4 times more infor-

mation on both the temperature and water vapor profile than microwave radiometers,

which leads to improved accuracy in the AERI-retrieved profiles under clear-sky condi-

tions. Blumberg et al. (2015) and Weckwerth et al. (2016) both confirmed that the AERI-

retrieved water vapor profile was more accurate than microwave radiometers below cloud

base or in cloud-free scenes using real observations.

A natural question is: Do the AERI retrievals have the sensitivity to distinguish between

the longwave radiative cooling rate profiles in the dry and moist columns seen in con-

vective aggregation scenarios? If so, then the AERI would be a good choice to include in

any ground-based network that is established to study convective aggregation from

observations. The AERI retrieval algorithm developed by Turner and Löhnert (2014),

which is able to retrieve lower-tropospheric thermodynamic profiles in both clear and

cloudy conditions, provides a complete error covariance matrix for each retrieval. Ther-

modynamic profiles derived from a Monte Carlo sampling of this error covariance matrix

were used to derive the RRTM to compute cloud-free longwave radiative heating profiles,

and the 1� r uncertainties at each level are shown in Fig. 11 (right). This demonstrates
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that the AERI has the accuracy to determine the radiative heating rate profiles in the two

clear-sky scenes. However, in moist convective regions, where clouds are numerous and

can dominate radiation fluxes, a combination of AERI and microwave radiometer retrievals

may be desirable to ensure sufficiently accurate humidity profiles (Löhnert et al. 2009;

Turner and Löhnert 2014). Furthermore, low clouds in the dry region contribute signifi-

cantly to self-aggregation in numerical simulations, so it would also be desirable to

measure vertical profiles of cloud water. This would enable a calculation of the total

radiative heating rate profiles. Cloud radars are the only type of instrument capable of this

type of measurement, but are likely prohibitively expensive to deploy in a network as

proposed here. A first step could be the deployment of ceilometers, which are a standard,

relatively inexpensive, autonomous, weak lidar used primarily at airports to determine

cloud base height.

A main strength of microwave and AERI measurements is their ability to measure

vertical profiles of moisture. If deployed in a network, the profilers in combination also

provide spatial context. A further extension integrates the surface-based measurements

with a satellite view of the CWV, thereby more fully interrogating the moisture budget

expressed in (1) (Hannah et al. 2016). The satellite can also be integrated with satellite-

derived perceptions of the precipitation and cloud distribution, while the surface-based

network provides further information on low clouds not easily detected from space and fills

in measurements in-between satellite overpasses, so that a rich, dense, three-dimensional

construction of a moisture field can be constructed that is large enough to encompass both

dry and moist regions. A remaining difficulty may be the typically short time spans for a

field deployment, muddying an interpretation of self-aggregation from data. Nevertheless,

high-resolution large-domain simulations coincident with such field observations, and

combined with observed surface fluxes and top-of-atmosphere radiative fluxes, will inspire

a deeper confidence in the theory of self-aggregation derived from RCE simulations and

help determine the relative importance of contributing processes.

6 Conclusions

Observing convective organization is not a new pursuit, as evidenced by the literature

review in this paper. But as we learn more about how convection clumps in idealized

models, there are new opportunities to formulate theories of fundamental convective

processes and test them (or at least gauge their plausibility) using observations. Models can

also be used at more realistic configurations to form a bridge between idealized simulations

and observations, and to help us better frame observational studies.

Insights from idealized simulations are already raising many new questions about how

the climate interacts with convective organization. But some findings are dependent on

model setup or formulation, and the few existing observational studies of aggregation are

not completely consistent with each other or with some model findings—we encourage

recent efforts to organize an intercomparison of RCE in models over a range of com-

plexities and configurations to help resolve these discrepancies. There is agreement

between models and observations that, as convection becomes clumped into fewer moist

regions, the subsidence regions become drier, resulting in a drier large-scale mean envi-

ronment. This drying, and a reduction of upper-tropospheric stratiform cloud, leads to

larger OLR and stronger atmospheric cooling. However, how aggregation and its effects
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interact with local SST on short time scales and with tropics-wide SST on long time scales

is still uncertain in both models and observations, as discussed further below.

Initiation processes, such as radiatively driven cold pools and related shallow over-

turning circulations, are one obvious observational target. Maintenance processes may be

even easier to study in observations, since they can be studied in heterogeneous conditions

more typical of convection in nature. There are already links between convective self-

aggregation processes in models and observed phenomena such as the MJO and tropical

cyclones, with feedbacks involving convection, clouds, moisture, radiation, and surface

fluxes being important. In fact, the difficulty of global weather and climate models to

simulate these phenomena may be related to problems with those models’ ability to

simulate aggregation processes, as mentioned in Wing et al. (2017).

Time scales are longer in idealized self-aggregation from homogeneous conditions than

typical time scales of observed growth of organized mesoscale convection, but we have

argued that this does not mean that idealized processes are not relevant for real organized

convection. This is because time scales vary a lot in idealized models, and exponential

growth implies shorter effective time scales when starting from already existing organi-

zation as is often found in nature. Furthermore, although the real world certainly contains

additional processes that can organize or disorganize convection (such as those reliant on

coastlines and orography), and these may dominate where they are faster or stronger than

self-aggregation processes, these are likely to be concentrated in particular regions and at

particular (especially smaller) space and time scales. This means that self-aggregation

processes may be favored in other regions and, perhaps, on larger spatial scales, and they

are still likely to be relevant for many phenomena and for climate. Feedbacks allowing for

the maintenance of idealized aggregation may also be important for maintaining organized

convection in nature, since disaggregation time scales are relatively short when longwave

radiation feedbacks are turned off in idealized simulations.

Some preliminary new findings show that an idealized simulation with elongated

channel geometry has a more realistic representation of atmospheric humidity than a

simulation with a square domain, which has too broad distribution of humidity and is too

dry in the driest regions when compared with radiosonde records from Nauru. This is an

example of how observations may be used to discriminate between different model con-

figurations and address concerns that may otherwise cast doubt on the relevance of

aggregation studies in general. Determining the reason for the difference in humidity

between these two model configurations is beyond the scope of this paper, and some

caution should be exercised when interpreting these results until the reasons and their

relationship to physical processes are better understood, since it is possible that the channel

simulation gets the ‘‘right answer for the wrong reason’’. However, possible reasons for

these humidity differences include differences in wind speed caused by stronger over-

turning circulations in the channel simulations, the development of slightly stronger mean

wind and wind shear in the channel simulations, or interactions between large-scale cir-

culations and multiple convective regions causing increased proximity and mixing between

moist and dry regions.

Recent work has underlined the potential importance of the sensitivity of aggregation

processes to SST and climate change. There are exciting new processes being proposed,

such as the ‘‘stability-iris’’ effect (Bony et al. 2016) that predicts smaller anvil fractions in

a warmer climate. We are gaining an understanding of how organized convection and

climate change may interact, but new questions are being raised about the fidelity of our

models. The ability to represent both large-scale circulations and convective processes

adequately is still a challenge for idealized models, and the effects of more complex
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processes such as ocean coupling are only beginning to be explored. There are also

challenges in using observations of the recent past to test model behavior in both idealized

and more realistic simulations of projected future climate. Specifically, we lack long

observational records, and studies of regional snapshots or individual cloud elements over

short time periods may not scale up to tropics-wide behavior on long time scales. There are

also differences in the SST dependence of initiation processes versus maintenance pro-

cesses in idealized self-aggregation which need to be further explored in both models and

observations. But the problem of aggregation in a warming world is an important one and

deserves a sustained research effort.

In addition to encouraging the continuing endeavor of confronting self-aggregation

processes with observations in general, we have proposed several specific lines of work

which appear promising. These include:

• existence, formation, and structure of radiatively driven cold pools

• MSE spatial variance budget analysis

• particle tracing back to last saturation (model and observations)

• radiosonde time scale analysis

• changes in satellite-observed aggregation state and anvil fraction over last few decades

(and further investigation of sensitivity to SST)

• paleotempestology using long-term isotopic records

• satellite analysis of link between water vapor isotopes and aggregation

• multiple-satellite temporal evolution of MSE budget for aggregated convection

• spaceborne radar to infer convective processes

• ground-based observational network

While this list is a good start, there are surely other opportunities to further our knowledge

of aggregation processes in idealized models using observations. And as the field advances,

there will be more ideas to test and explore. We hope the work reviewed and proposed here

is the beginning of an exciting new engagement between modeling and observational

studies of organized convection.
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